Question		ion	Answer		Guidance		
1	(a)	(i) (ii) (iii)	F Correct direction and labelling for W and T	B1	Both forces must be correct to score this mark.		
		(111)	W Straight line for F Correct direction not horizontal or vertical	B1	Allow: Freehand sketch of <i>F</i> must lie between 15° and 75° to the horizontal to score this mark.		
	(b)	(i)	a = T/m $a = 28 \times 10^3 / 6200 (= 4.516)$ $v^2 = u^2 + 2as$ $56^2 = 0 + 2 \times 4.516s$ (any subject) s = 350 (m)	C1 C1 A1	Must substitute to score this mark. Answer to 3 sf = 347 (m). Allow: max 2 marks if v is not squared but correct formula was quoted. [Expect $s = 6.2$ (m)] Allow: $Fs = \frac{1}{2} mv^2$ [C1] $28 \times 10^3 s = \frac{1}{2} \times 6200 \times 56^2$ [C1] (any subject) $s = 350 \text{ (m)}$ [A1] Allow: $Ft = mv$ $t = 12.4 \text{ (s)}$ [C1] $s = \frac{1}{2} vt = \frac{1}{2} \times 56 \times 12.4$ [C1] $s = 350 \text{ (m)}$ [A1]		
	(c)	(ii)	Air resistance/drag/friction acts on aircraft <u>decreasing</u> either the net forward force or the acceleration Fs = Δ KE so reduced force must act over a longer distance to produce enough kinetic energy for take-off OR v² = (u²) + 2as so reduced acceleration means longer distance to reach take-off speed. $L \cos 35^{\circ} = 6200 \times 9.81$	M1	Not: 'slowing the aircraft down'. Allow word equation. Note: This mark cannot be given if the previous (M1) mark has not been scored. Allow: Use of 9.8		
			$L = \frac{6200 \times 9.81}{\cos 35^{\circ}} \text{OR} L = 7.42 \times 10^{4}$ $L = 7.4 \times 10^{4} \text{ (N)}$	M1 A0	Note: There is no mark for the answer as it is given in the question. Marks in 'Show' questions are for the working.		

(Question		Answer		Guidance	
		(ii)	$L\sin 35^{\circ} = mv^{2}/r$ $r = \frac{6200 \times 86^{2}}{r}$	C1		
			$7 - \frac{1}{7.4 \times 10^4 \text{ sin}35^\circ}$	C1	Possible ecf from (c)(i).	
			r = 1100 (m)	A1	Correct answer to 3 sf = 1.08×10^3 (m). Allow: 1 mark for using cos 35° instead of sin 35°. Expect gives an answer of 760 (m). Allow: 2 marks for correct working using v = 56 (m s ⁻¹) Expect an answer of $r = 460$ (m). No marks for using tan 35° or for omitting a trig function.	
	(d)	(i)1	Indication at 'top' of circle (by eye)	B1		
		(i)2	0 (N)	B1		
		(ii)	P is not the resultant force OR Resultant force must be towards centre of circle so P must have a component acting vertically upwards, equal in magnitude to W (AW)	B1	Allow: (Horizontal) component of <i>P</i> provides centripetal acceleration and vertical component of <i>P</i> is equal to weight. (AW)	
			Total	14		

C	Question		Answer		Guidance	
2	(a)	(i)	Arrow (labelled F) directed towards centre of circle	B1	Allow: arrow drawn parallel to the string	
		(ii)	Resultant force (F) acts at 90° to motion / velocity of bung	B1	Allow: No component of <i>F</i> acts in the direction of motion (B1)	
			so no work done is done by F (hence no change in speed)	B1	hence there is no acceleration in the direction of motion (AW) (B1)	
	(b)	(i)	Student <u>tries to</u> rotate bung at <u>constant</u> radius / <u>tries to</u> keep reference mark at end of tube (AW)	B1	Not: bald 'constant radius'	
			Force F is calculated using $F = Mg$. where M is mass of slotted masses	B1	Not : F = weight	
			Measure time t for n revolutions of the bung (hence calculate T for 1 revolution).	B1	Not: 'take time for 1 revolution'	
			Measure radius r when <u>stationary</u>	B1		
			Calculate v using $2\pi r n/t$ (or $2\pi r/T$).	B1		
		(ii)	Straight line of positive gradient <u>passing through the origin</u>	B1		
			$F = \frac{m}{r} v^2 \text{hence gradient} = \frac{m}{r}$	B1	Cannot award this mark if graph is curved	
			Mass = gradient (of graph) x radius (of orbit)	B1	Can score this mark if graph is curved	
			Total	11		

3	Expected Answers	Marks	Additional guidance
(a)(i)	A body will remain at rest or continue to move with constant velocity unless acted upon by a force (WTTE)	B1	Do not allow speed unless "speed in a straight line" is stated. Allow "uniform motion"
(a)(ii)	The force which gives a mass of 1 kg an acceleration of 1 m s ⁻²	B1	Allow 1N = 1 kg m s ⁻²
(b)(i)	Use of $v = u + at$ OR $a = (v - u) / t \Rightarrow a = (55 - 0) / 2.2$ $a = 25 \text{ (m s}^{-2}\text{)}$	C1 A1	
(b)(ii)	Use of $s = ut + \frac{1}{2} at^2$ e.g. $s = 0 + \frac{1}{2} \times 25 \times 2.2^2$ s = 60.5 (m)	C1 A1	Allow other valid solutions e.g. using $v^2 = u^2 + 2as$
(b)(iii)	$F = ma = 3.2 \times 10^4 \times 25 = 8.0 \times 10^5 \text{ (N)}$	A1	Allow ecf from (b)(i)
(c)(i)	towards the centre of the circle.	B1	Do not allow a bare "perpendicular to the velocity" Do not allow "in the same direction as the acceleration."
(c)(ii)	use $F = mv^2/r$ e.g. $F = (3.2 \times 10^4 \times 120^2)/870$ $F = 5.3 \times 10^5 (529655) (N)$	C1 A1	If 55 is used instead of 120 for the velocity F = 1.1x10 ⁵ ms ⁻¹ and scores 1 mark
(d)(i)	At top of the circle when the weight provides/equals the required centripetal force	M1 A1	Allow "when the resultant force = weight"
(d)(ii)	realisation that acc = g (OR 9.81) AND (hence) $v^2/r = g$ { $v = \sqrt{(gr)} = \sqrt{(9.81 \times 1500)}$ } $\Rightarrow v = 120 \text{ (m s}^{-1}) \text{ (121.3)}$	M1 A1	Accept 121.24 as this corresponds to 9.8, do not allow 122.5 since this assumes $g = 10 \text{ ms}^{-2}$
	Total	14	

Question		ion	Expected Answers		Additional guidance		
4	а	i	$(v = 2\pi r/t) t = 2\pi 60/0.26 = 1450 s$	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³ Do not allow a bare 1.5 x10 ³		
		ii	(ii) corr substitution into $F = mv^2/r$: eg $F = (9.7x10^3x0.26^2)/60$ F = 10.9 N	C1 A1	Allow 11 N		
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow		
		ii	Greatest reaction force is a C because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE)	M1 A1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark.		
			2. Least a A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE)	B1	They must make correct reference to the resultant force that provides the required centripetal force/acceleration. Allow answers using the equation $F = mv^2/r$ such as N_c - mg (at C) = centripetal force OR mv^2/r OR $mg + N_A$ (at A) = centripetal force OR mv^2/r		
			Total	7			